In vitro transcription and translation inhibition by anti-promyelocytic leukemia (PML)/retinoic acid receptor alpha and anti-PML peptide nucleic acid.
نویسندگان
چکیده
Peptide nucleic acids (PNAs) complementary to the 15 bases around the fusion point of both genomic DNA and cDNA of the promyelocytic leukemia/retinoic acid receptor alpha (PML/ RAR alpha; P/R) hybrid gene present in acute promyelocytic leukemia cells were synthesized and shown by gel retardation experiments to specifically bind oligonucleotides corresponding to the fusion region of the P/R molecule. PNA was also able to successfully compete with anti-P/R DNA for duplex formation with P/R DNA and to displace the anti-P/R DNA from dsDNA. In vitro transcribed P/R RNA from two inserts of approximately 350 to approximately 700 bp were tested in gel acceleration experiments with fluorescein-conjugated PNA and showed stable binding (resistant to denaturing conditions) of PNA to the newly transcribed RNA. Control RNA or transcripts from the noncoding strand did not bind PNA. However, this PNA, although able to specifically clamp polymerase chain reaction, was incapable of inhibiting in vitro translation of the PML/RAR alpha mRNA, even when a bis-PNA was used. Therefore, a PNA was targeted against the start region of the P/R cDNA and against poly-purine regions of the gene. Specific inhibition of in vitro translation and transcription was shown, starting at concentrations as low as 100 nmol/L. When oligonucleotides presenting the same sequence were compared, PNA proved to be approximately 40 times more active. In conclusion, in vitro inhibition of translation and transcription of the P/R gene can be obtained with PNA; however, it is still necessary to target the ATG start region or poly-purine regions of the gene.
منابع مشابه
Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-alpha and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid.
The fusion protein promyelocytic leukemia (PML)/retinoic acid receptor (RAR)alpha is tightly linked to the pathogenesis of acute promyelocytic leukemia (APL); hence, it represents a tumor-associated, transformation-related molecule. In this study, three anti-PML adamantyl-conjugated peptide nucleic acid (PNA) oligomers previously described as in vitro inhibitors of PML/RARalpha translation were...
متن کاملInhibition of Promyelocytic Leukemia (PML)/Retinoic Acid
The fusion protein promyelocytic leukemia (PML)/retinoic acid receptor (RAR)a is tightly linked to the pathogenesis of acute promyelocytic leukemia (APL); hence, it represents a tumor-associated, transformationrelated molecule. In this study, three anti-PML adamantyl-conjugated peptide nucleic acid (PNA) oligomers previously described as in vitro inhibitors of PML/RARa translation were combined...
متن کاملSpecific Inhibition of the Expression of the Promyelocytic Leukemia (PML) Protein by Anti-Sense Oligonucleotides
In the present study, using anti-sense oligonucleotides the inhibition of expression of the PML protein hasbeen investigated. The anti-sense oligonucleotides were designed against the translation initiation site ofthe PML gene, and their effects were investigated on cellular growth and DNA synthesis. Incubation of normalhuman fibroblast cells with the anti-sense oligonucleotid...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملCytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients
Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 88 4 شماره
صفحات -
تاریخ انتشار 1996